Mutation in nucleotide-binding domains of sulfonylurea receptor 2 evokes Na-ATP-dependent activation of ATP-sensitive K+ channels: implication for dimerization of nucleotide-binding domains to induce channel opening.
نویسندگان
چکیده
The ATP-sensitive K+ (KATP) channel is composed of a sulfonylurea receptor (SUR) and a pore-forming subunit, Kir6.2. SUR is an ATP-binding cassette (ABC) protein with two nucleotide-binding domains (NBD1 and NBD2). Intracellular ATP inhibits KATP channels through Kir6.2 and activates them through NBDs. However, it is still unknown how ATP-bound NBDs activate KATP channels. A prokaryotic ABC protein, MJ0796, which is entirely NBD, forms a dimer in the presence of Na-ATP when its glutamate at position 171 is substituted with glutamine. Mg2+ or K+ destabilizes the dimer. We made the corresponding mutation in the NBD1 (D834N) and/or NBD2 (E1471Q) of SUR2A and SUR2B. As measured in the inside-out configuration of the patch-clamp method, SUR2x(D834N, E1471)/Kir6.2 channels mediated significantly larger currents in the presence of internal 1 mM Na-ATP than K-ATP alone or Mg-ATP. The response to Na-ATP resulted from an increase in the open probability but not single-channel amplitude of the channels and was abolished by glibenclamide (10(-5) M). In the presence of 1 mM Mg2+ -free ATP, Na+ increased the activity of the channels in a concentration-dependent manner. The Na-ATP-dependent activation was never observed with KATP channels including either the wild-type SUR2x, SUR2x(D834N), or SUR2x(E1471). Nicorandil activated SUR2x(D834N, E1471Q)/Kir6.2 channels more strongly in the presence of Na-ATP than K-ATP alone, whereas the reverse was true for wild-type SUR2x/Kir6.2 channels. Therefore, it is likely that NBDs of SUR2x dimerize in response to ATP and nicorandil. The dimerization induces the opening of the KATP channel, probably by causing a conformational change of SUR2x.
منابع مشابه
Identification of a functionally important negatively charged residue within the second catalytic site of the SUR1 nucleotide-binding domains.
The ATP-sensitive K+ channel (KATP channel) couples glucose metabolism to insulin secretion in pancreatic beta-cells. It is comprised of sulfonylurea receptor (SUR)-1 and Kir6.2 proteins. Binding of Mg nucleotides to the nucleotide-binding domains (NBDs) of SUR1 stimulates channel opening and leads to membrane hyperpolarization and inhibition of insulin secretion. To elucidate the structural ba...
متن کاملRegulation of KATP channel expression and activity by the SUR1 nucleotide binding fold 1.
ATP-sensitive K(+) (K(ATP)) channels are oligomeric complexes of pore-forming Kir6 subunits and regulatory Sulfonylurea Receptor (SUR) subunits. SUR, an ATP-Binding Cassette (ABC) transporter, confers Mg-nucleotide stimulation to the channel via nucleotide interactions with its two cytoplasmic domains (Nucleotide Binding Folds 1 and 2; NBF1 and NBF2). Regulation of K(ATP) channel expression is ...
متن کاملThe nucleotide-binding domains of sulfonylurea receptor 2A and 2B play different functional roles in nicorandil-induced activation of ATP-sensitive K+ channels.
Nicorandil activates ATP-sensitive K(+) channels composed of Kir6.2 and either sulfonylurea receptor (SUR) 2A or 2B. Although SUR2A and SUR2B differ only in their C-terminal 42 amino acids (C42) and possess identical drug receptors and nucleotide-binding domains (NBDs), nicorandil more potently activates SUR2B/Kir6.2 than SUR2A/Kir6.2 channels. Here, we analyzed the roles of NBDs in these chann...
متن کاملA universally conserved residue in the SUR1 subunit of the KATP channel is essential for translating nucleotide binding at SUR1 into channel opening
The sulphonylurea receptor (SUR1) subunit of the ATP-sensitive potassium (KATP) channel is a member of the ATP-binding cassette (ABC) protein family. Binding of MgADP to nucleotide-binding domain 2 (NBD2) is critical for channel activation.We identified a residue in NBD2 (G1401) that is fully conserved among ABC proteins and whose functional importance is unknown. Homology modelling places G140...
متن کاملActivation and inhibition of ATP-sensitive K+ channels by fluorescein derivatives.
Fluorescein derivatives are known to bind to nucleotide-binding sites on transport ATPases. In this study, they have been used as ligands to nucleotide-binding sites on ATP-sensitive K+ channels in insulinoma cells. Their effect on channel activity has been studied using 86Rb+ efflux and patch-clamp techniques. Fluorescein derivatives have two opposite effects. First, like ATP, they can inhibit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 66 4 شماره
صفحات -
تاریخ انتشار 2004